Presteady state kinetics of an S-adenosylmethionine-dependent enzyme. Evidence for a unique binding orientation requirement for EcoRI DNA methyltransferase.

نویسندگان

  • N O Reich
  • N Mashhoon
چکیده

We present the first presteady state kinetic analysis of an S-adenosylmethionine-dependent enzyme. The target enzyme is the bacterial EcoRI DNA methyl-transferase, which transfers the methyl group to the second adenine in the DNA sequence GAATTC. The rate constant for conversion of the central complex (enzyme-DNA-S-adenosylmethionine) to products (enzyme-methylated DNA-S-adenosylhomocysteine) (41 +/- 7 s-1) is over 300-fold faster than kcat, consistent with our demonstration that steps after methyl transfer are rate-limiting (Reich, N. O., and Mashhoon, N. (1991) Biochemistry 30, 2933-2939). Methyl transfer at the N6 amino moiety of adenine on each strand requires a single binding orientation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous DNA Binding, Bending, and Base Flipping

We measured the kinetics of DNA bending by M.EcoRI using DNA labeled at both 5 -ends and observed changes in fluorescence resonance energy transfer. Although known to bend its cognate DNA site, energy transfer is decreased upon enzyme binding. This unanticipated effect is shown to be robust because we observe the identical decrease with different dye pairs, when the dye pairs are placed on the ...

متن کامل

Identification of peptides involved in S-adenosylmethionine binding in the EcoRI DNA methylase. Photoaffinity laveling with 8-azido-S-adenosylmethionine.

The Mr 38,050 monomeric EcoRI DNA methylase is part of a bacterial restriction-modification system. The methylase transfers the methyl group from S-adenosylmethionine (AdoMet) to the second adenine in the double-stranded DNA sequence 5'-GAATTC-3'. We have used the radiolabeled photoaffinity analog 8-azido-S-adenosylmethionine (8-N3-AdoMet) to identify peptides at the AdoMet binding site in the ...

متن کامل

Molecular basis of substrate promiscuity for the SAM-dependent O-methyltransferase NcsB1, involved in the biosynthesis of the enediyne antitumor antibiotic neocarzinostatin.

The small molecule component of chromoprotein enediyne antitumor antibiotics is biosynthesized through a convergent route, incorporating amino acid, polyketide, and carbohydrate building blocks around a central enediyne hydrocarbon core. The naphthoic acid moiety of the enediyne neocarzinostatin plays key roles in the biological activity of the natural product by interacting with both the carri...

متن کامل

Structures of liganded and unliganded RsrI N6-adenine DNA methyltransferase: a distinct orientation for active cofactor binding.

The structures of RsrI DNA methyltransferase (M.RsrI) bound to the substrate S-adenosyl-l-methionine (AdoMet), the product S-adenosyl-l-homocysteine (AdoHcy), the inhibitor sinefungin, as well as a mutant apo-enzyme have been determined by x-ray crystallography. Two distinct binding configurations were observed for the three ligands. The substrate AdoMet adopts a bent shape that directs the act...

متن کامل

Substrate binding in vitro and kinetics of RsrI [N6-adenine] DNA methyltransferase.

RSR:I [N:6-adenine] DNA methyltransferase (M.RSR:I), which recognizes GAATTC and is a member of a restriction-modification system in Rhodobacter sphaeroides, was purified to >95% homogeneity using a simplified procedure involving two ion exchange chromatographic steps. Electrophoretic gel retardation assays with purified M.RSR:I were performed on unmethylated, hemimethylated, dimethylated or no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 268 13  شماره 

صفحات  -

تاریخ انتشار 1993